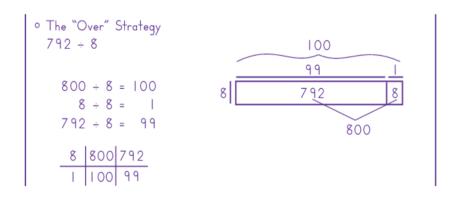
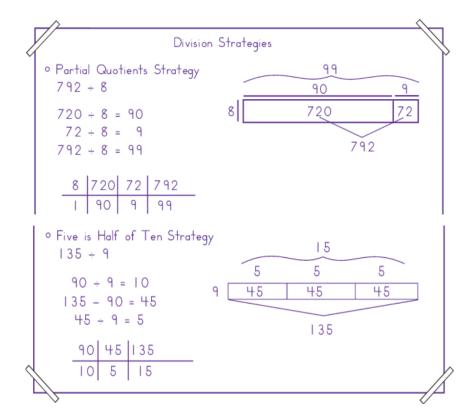
Estrategias de Matemáticas Matemáticas que usamos en el 4to Grado


Descripciones de estrategias e ilustraciones de la Guía para Maestros del 4to Grado "Bridges in Mathematics", usado con permiso del Centro de Aprendizaje de Matemáticas para su distribución al personal, estudiantes y familias del Distrito Escolar Newhall. Otros usos prohibidos.


o The Equivalent Ratio Strategy
$$792 \div 8$$
 $792 \div 8 = \frac{792}{8}$

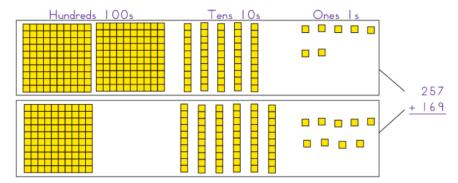
Number of $792 \cdot 396 \cdot 198 \cdot 99$

Number of $8 \cdot 4 \cdot 2 \cdot 1$

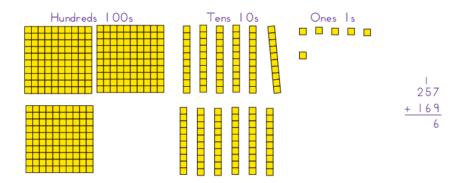
Kids

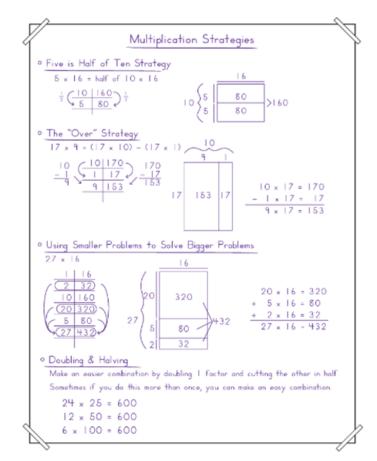
Este folleto les mostrará algunas de las estrategias que he aprendido para tener más éxito en la solución de problemas. A medida que me convierto en un matemático más fuerte, aprendo cómo y por qué los problemas se pueden resolver de diferentes maneras. Cuanto más aprendo y uso estas diferentes estrategias, más eficiente y preciso me volveré.

Sumas

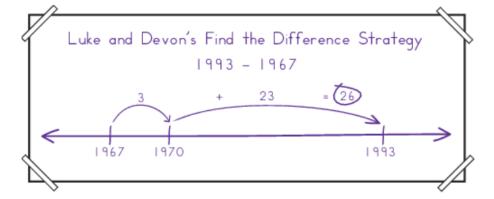

Línea Numérica

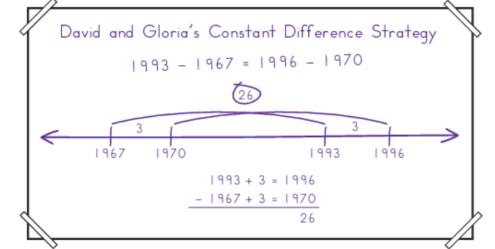
$$697 + 178$$

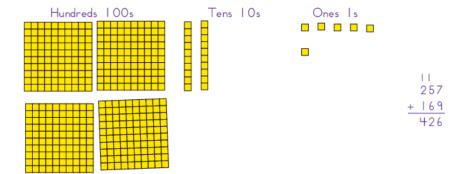



Modelo de Base de Diez

Los modelos me ayudan a prepararme para el algoritmo estándar porque puedo alinear los dígitos por el valor del lugar y ver lo que se necesita.




Puedo reagrupar los lugares de las decenas y de los cientos.



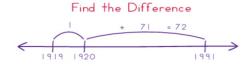
Distribución del valor del lugar

Puedo fraccionar los números por valor de lugar sin modelos para ver si necesito reagrupar mientras sumo.

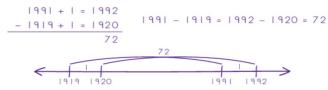
$$158 = 100 + 50 + 8$$

$$+ 275 = 200 + 70 + 5$$

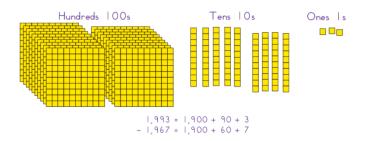
$$300 + 120 + 13 = 420 + 13 = 433$$

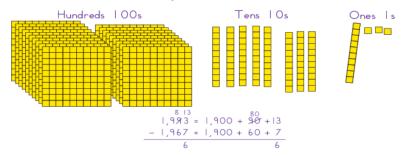

Algoritmo

Conforme me vuelvo más eficiente, entiendo y uso el algoritmo estándar para resolver problemas de sumas.

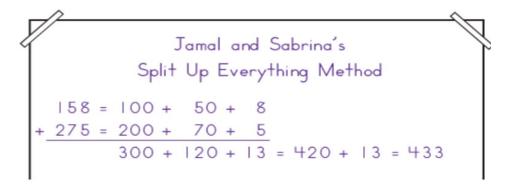

Restas

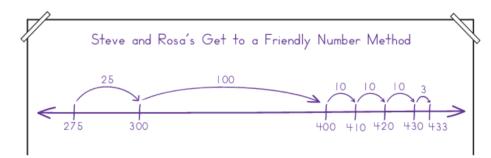
Línea Numérica

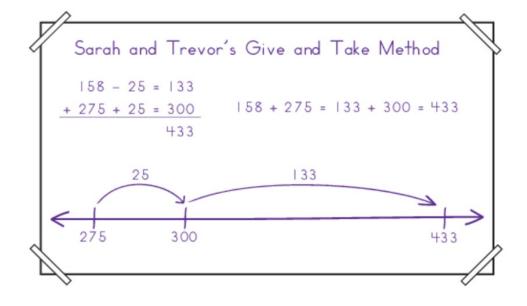

Constant Difference


Modelo de Base de Diez

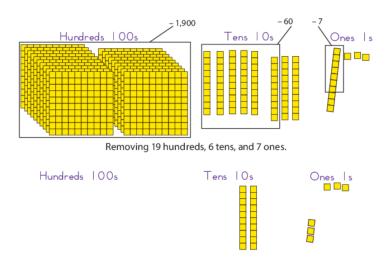
Los modelos me ayudan a prepararme para el algoritmo estándar porque puedo alinear los dígitos por el valor del lugar y ver lo que se necesita.


1993-1967




Necesito mover a diez al lugar de los unos para poder restar.

Éstos son algunos ejemplos de estudiantes usando diferentes estrategias:



Expectaciones para el Fin del Año

- Usar el algoritmo estándar para sumar y restar con 1.000.000
- Usar estrategias para multiplicar y dividir un número de 4 dígitos por un número de 1 dígito
- Usar estrategias para multiplicar 2 números de dos dígitos
- Sumar y restar fracciones con denominadores: 2, 3, 4, 6, 8, 10, 12
- Sumar y restar fracciones mixtas
- Multiplicar una fracción por un número entero
- Ver relación entre decimales y fracciones

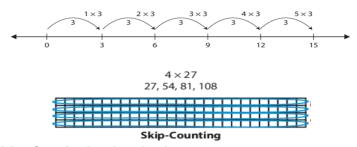
Yo puedo luego restar 1967.

Distribución del valor del lugar

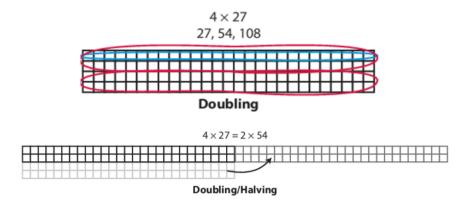
Puedo fraccionar los números por valor de lugar sin modelos para ver si necesito reagrupar mientras resto.

Algoritmo

Conforme me vuelvo más eficiente, entiendo y uso el algoritmo estándar para resolver problemas de restas.

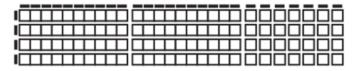

$$\begin{array}{c|c}
 & 1961 \\
 \hline
 -1,919 \\
 \hline
 72
\end{array}$$

$$\begin{array}{c}
 & 1961 \\
 -1934 \\
 \hline
 0033
\end{array}$$

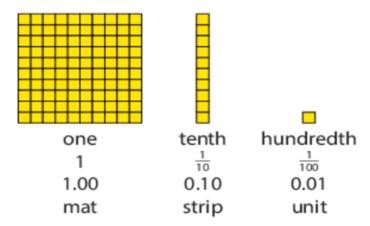

Multiplicaciones

Desarrollo mi razonamiento de multiplicación desde el 3er grado para hacer problemas de multiplicación más complejos

Línea Numérica/Conteo salteado


Doblar & reducir a la mitad

Producto Parcial de Matrices con Fichas


Empiezo usando matrices como lo hice en el 3er grado, pero avanzo al modelo de área

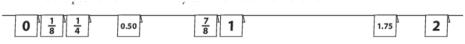
$$4 \times 27 = (4 \times 10) + (4 \times 10) + (4 \times 7)$$


Decimales

Puedo reconocer decimales usando piezas de base diez como decimales o fracciones.

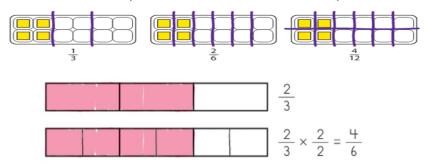
Podría nombrar a este modelo uno y cuatro décimas y escribirlo como una fracción número 1 4/10 o como un número decimal 1.4

Pude ver que puede ser nombrado uno y cuarenta centésimos y ser escrito como 140/100 o 1.40.



Fracciones

Solo los denominadores 2, 3, 4, 5, 6, 8, 10, 12, 100 se usan en el 4to grado.


Línea numérica

Puedo ordenar fracciones y decimales en una línea numérica para comparar el valor y la equivalencia.

Modelos

Puedo usar modelos para ver si las fracciones son equivalentes.

Ecuaciones

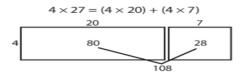
Puedo usar estrategias de sumas y multiplicaciones.

Equivalent Fractions
$$\frac{1}{2} = \frac{1}{4} + \frac{1}{4} = \frac{2}{4}$$

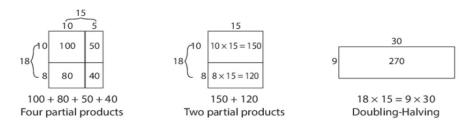
$$\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1$$

$$\frac{1}{2} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{4}{8}$$

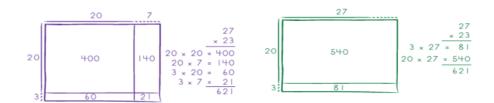
$$\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{4}{4} = 1$$


$$\frac{1}{4} = \frac{1}{8} + \frac{1}{8} = \frac{2}{8}$$

$$\frac{1}{4} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{4}{16}$$


$$16 \times \frac{1}{16} = \frac{16}{16} = 1$$

$$\frac{3}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4}$$


Modelo de Área

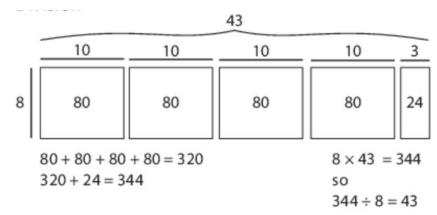
Puedo fraccionar los problemas usando el modelo de área para ayudarme a darle sentido a la tarea usando una variedad de estrategias diferentes.

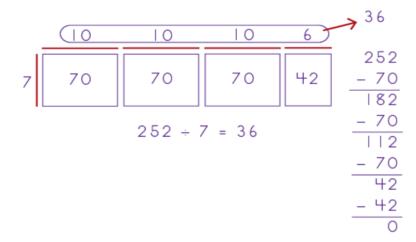
Conforme desarrollo mi comprensión, avanzo hacia el uso de un algoritmo para ser más eficiente.

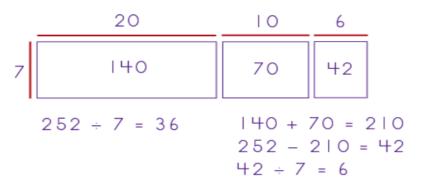
Tabla de proporciones

Puedo ver el patrón en una tabla de proporciones para ayudarme a resolver los problemas.

18s	Total	18s	Total
1	18		
2	36	$\times 2 \underbrace{\times 10}_{10} \underbrace{\times 10}_{10}$	18
3	54	$\times 2 \times 10^{10}$	$180 \times 10 \times 2$
4	72	~= (
5	90	→ 2	36 ←
6	108	12	216
7	18 36 54 72 90 108 126		


Divisiones


Uso mi comprensión de la relación entre multiplicaciones y divisiones para ayudarme a resolver problemas.


Modelo de área

Puedo fraccionar los números para encontrar la respuesta. Esto es similar a los grupos iguales que hice en el 3er grado.

En 344 ÷ 8, hice cada grupo de 10 x 8 y continué hasta que no pude hacer un grupo completo de 80. Agrupé un total de 320. Tuve 24 más para llegar a 344 así que hice 3 grupos más de 8.

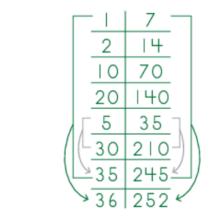


Tabla de proporciones

$$252 \div 7 = ?$$

$$35 + 210 = 245$$

 $245 + 7 = 252$
so $252 \div 7 = 36$

Strategy for solving 243 ÷ 9

Another strategy for solving 243 ÷ 9

Groups	Total	
1	9	1×9= 9
10	90	10×9= 90
20	180	$20 \times 9 = 180$
5	45	5 × 9 = 45
2	18	2×9= 18
27	243	

$$243 \div 9 = 27$$