Math Strategies We Use in 6th Grade

This booklet will show you some of the strategies I have learned to be more successful at solving problems. As I become a stronger mathematician, I learn how and why problems can be solved in different ways. The more I learn and use these different strategies, the more efficient and accurate I will become.

In 6th grade, I draw from the strategies I was taught in 5th grade to deepen my understand and begin to use the standard algorithm in much of my work.

Addition, Subtraction, & Multiplication

In 6th grade, my understanding of addition, subtraction, and multiplication extends to using the standard algorithm to solve problems with multi-digit decimals and fractions.

Decimals

Add: 37.68 + 5.2 + 125	Subtract: 17 – 8.297
37.68	
5.20	17.000
+125.00	<u>-8.297</u>
167.88	8.703

When multiplying decimals, I can use the area model, partial product, or the standard algorithm. In 6th grade, the area model is also called the generic rectangle.

area model/ generic rectangle

	2	+0.3	+ 0.05
1	2	0.3	0.05
+ 0.4	0.8	0.12	0.020

partial product

2.35	standard algorithm	
$\frac{\times \ 1.4}{0.020}$		
0.020	2.35	
0.8	<u>× 1.4</u>	
0.05	0.940	
0.3	2.35	
2.0	3.29	
3.290		

Here are some example of students using different strategies:

Finding Unit Rate

You can buy 12 oranges for \$6. What is the cost per orange?

cost	\$6	\$1	\$0.50
oranges	12	2	1

Simplifying Expressions

$$3(2x + y) - x$$

$$3 \cdot 2x + 3 \cdot y - x$$

$$6x + 3y - x$$

$$5x + 3y$$

Solving Equations

$$3x^2 + 5x$$

$$3 \cdot 7^2 + 5 \cdot 7$$

$$\frac{1}{3}x = 24$$

$$3 \cdot 7 \cdot 7 + 5 \cdot 7$$

$$147 + 35$$

$$x = 24 \cdot 3 = 72$$

End of the Year Expectations

- Fluently divide multi-digit whole numbers using the standard algorithm.
- Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm.
- Divide fractions by fractions using models and equations.
- Solve expressions, equations, and inequalities with one variable and whole number exponents using order of operations.

Fractions

I need to find common denominators when adding or subtracting.

I can use the Giant One.

I can build a ratio table

$$\frac{2}{3} \cdot \boxed{\frac{2}{2}} = \frac{4}{6}$$

Addition

$$8\frac{3}{4}+4\frac{2}{5}$$

$$\frac{1}{5} + \frac{2}{3} \Rightarrow \frac{1}{5} \cdot \boxed{\frac{3}{3}} + \frac{2}{3} \cdot \boxed{\frac{5}{5}} \Rightarrow \frac{3}{15} + \frac{10}{15} = \frac{13}{15}$$

$$\frac{1}{5} + \frac{2}{3} \Rightarrow \frac{1}{5} \cdot \underbrace{\left[\frac{3}{3}\right]}_{3} + \frac{2}{3} \cdot \underbrace{\left[\frac{5}{5}\right]}_{5} \Rightarrow \frac{3}{15} + \frac{10}{15} = \frac{13}{15}$$

$$8 \cdot \underbrace{\frac{3}{4}}_{4} = 8 + \frac{3}{4} \cdot \underbrace{\left[\frac{5}{5}\right]}_{5} = 8 \cdot \frac{15}{20}$$

$$+4 \cdot \underbrace{\frac{2}{5}}_{5} = 4 + \frac{2}{5} \cdot \underbrace{\left[\frac{4}{4}\right]}_{4} = +4 \cdot \frac{8}{20}$$

$$12 \cdot \underbrace{\frac{23}{20}}_{20} = 13 \cdot \underbrace{\frac{23}{20}}_{5} = 13 \cdot \underbrace{\frac{23}{20}}_{5} = \frac{13}{20}$$

Subtraction

$$\frac{5}{6} - \frac{1}{4}$$

$$\frac{5}{6} - \frac{1}{4} \Rightarrow \frac{5}{6} \cdot \boxed{\frac{2}{2}} - \frac{1}{4} \cdot \boxed{\frac{3}{3}} \Rightarrow \frac{10}{12} - \frac{3}{12} = \frac{7}{12}$$

$$2\frac{1}{6} - 1\frac{4}{5} \Rightarrow \frac{13}{6} - \frac{9}{5}$$

$$\Rightarrow \frac{13}{6} \cdot \frac{13}{5} - \frac{9}{5} \cdot \frac{16}{6}$$

$$\Rightarrow \frac{35}{60} - \frac{54}{20} = \frac{11}{20}$$

Multiplication

When multiplying fractions, I can use an area model or the standard alarea model/generic rectangle to algorithm gorithm.

$$\frac{2}{3} \cdot \frac{3}{4} = \frac{6}{12}$$

$$2\frac{2}{3} \cdot 4\frac{3}{5} = 8 + \frac{6}{5} + \frac{8}{3} + \frac{6}{15} = 12\frac{4}{15}$$

Division

I can divide using the standard algorithm for whole numbers.

Partial Quotient

Standard Algorithm

Decimals

I can use the standard algorithm or multiplication and place value strategies to solve problems involving division with decimals.

$$4.2 \div 0.35 = (4.2 \times 100) \div (0.35 \times 100) = 420 \div 35 = 12$$

$$1.2)27.42 \Rightarrow 12.)274.2 \Rightarrow 12)274.20$$

$$24$$

$$34$$

$$24$$

$$102$$

$$96$$

$$60$$

$$60$$

Fractions

I can use visual models and the "giant one" strategy when dividing fractions by fractions.

Number Line

I ask myself how many $\frac{1}{2}$

Area Model

Common Denomi-

nator

$$\frac{2}{5} \div \frac{3}{10} = \frac{4}{10} \div \frac{3}{10}$$
$$= 4 \div 3$$
$$= \frac{4}{3} = 1\frac{1}{3}$$

Giant One
$$\frac{3}{4} \div \frac{2}{5} = \frac{\frac{3}{4}}{\frac{2}{5}} \cdot \begin{bmatrix} \frac{5}{2} \\ \frac{5}{2} \end{bmatrix} = \frac{\frac{3}{4} \cdot \frac{5}{2}}{\frac{1}{2}} = \frac{3}{4} \cdot \frac{5}{2} = \frac{15}{8} = 1\frac{7}{8}$$