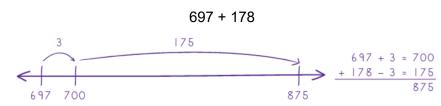
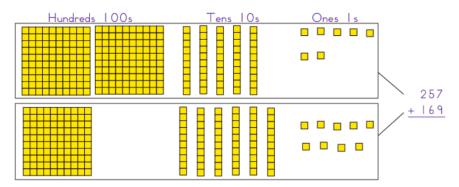

Math Strategies We Use in 4th Grade

Strategy descriptions and illustrations from *Bridges in Mathematics* Grade 4 Teachers Guide, used with permission of The Math Learning Center for distribution to Newhall School District staff, students, and families. Other uses prohibited.

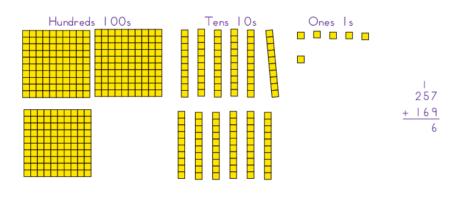
0	° The Equivalent Ratio Strategy 792 ÷ 8						
	$792 \div 8 = \frac{792}{8}$						
	Number of Tickets	792	396	198	99	_	
	Number of Tickets Number of Kids	8	4	2	I		

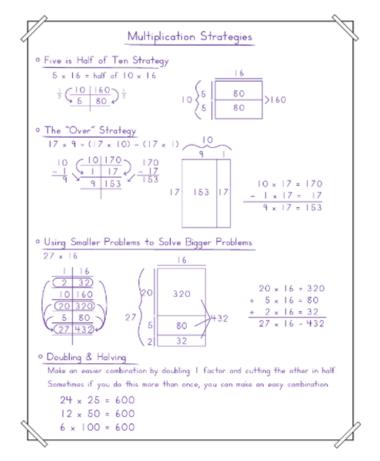


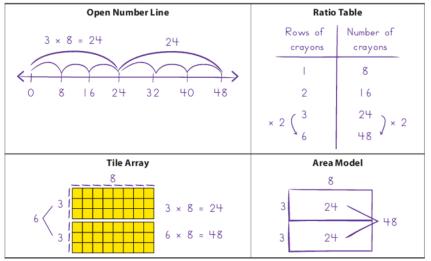
This booklet will show you some of the strategies I have learned to be more successful at solving problems. As I become a stronger mathematician, I learn how and why problems can be solved in different ways. The more I learn and use these different strategies, the more efficient and accurate I will become.

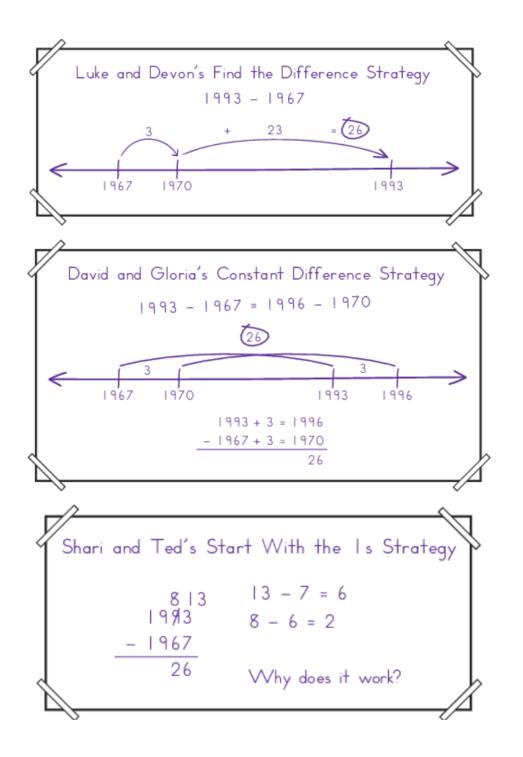

Addition

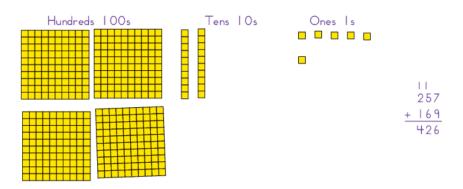
Number line




Base Ten Model


Modeling helps me get ready for the standard algorithm because I can line up the digits by place value and see what is needed.



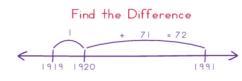

I can regroup the tens and hundreds places.

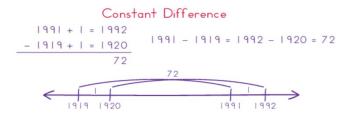
Place Value Splitting

I can break numbers up by place value without models to see if I need to regroup while adding.

	58 =	100 +	50 +	8			
+	275 =	200 +	70 +	5			
		300 +	120 +	13	= 420 +	3 = 4	33

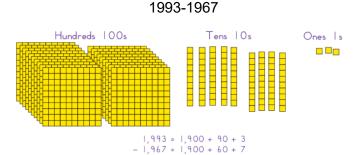
Algorithm

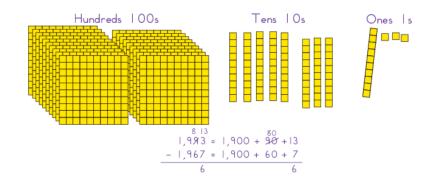

4


As I become more efficient, I understand and use the standard algorithm to solve addition problems.

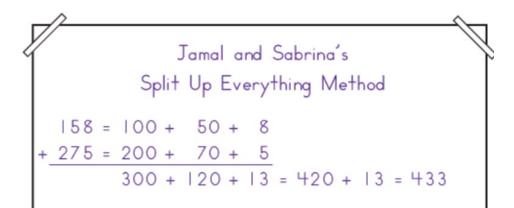
	1 1
1,947	58,379
+ 99	<u>+ 31,850</u>
2,046	9_,229

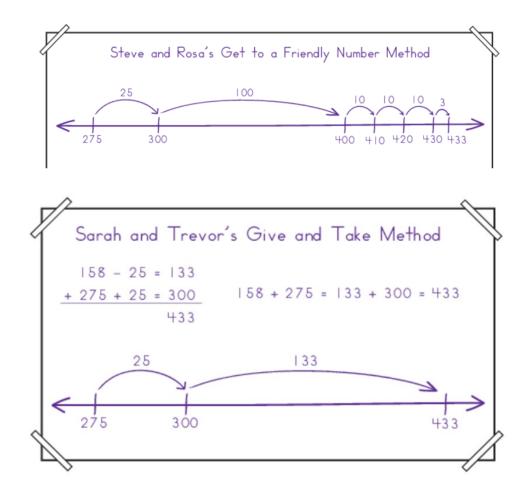
Subtraction


Number Line



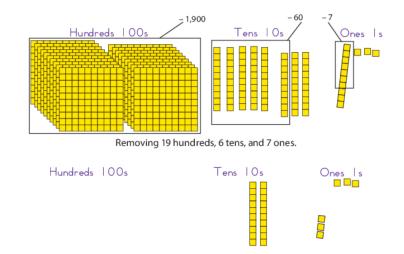
Base Ten Model


Modeling helps me get ready for the standard algorithm because I can line up the digits by place value and see what is needed.



I need to move a ten to the ones place to be able to subtract.

Here are some example of students using different strategies:



End of the Year Expectations

- Use the standard algorithm to add and subtract with 1,000,000
- Use strategies to multiply and divide a 4-digit number by 1-digit number
- Use strategies to multiply 2 two-digit number
- Add and subtract fractions with denominators: 2, 3, 4, 6, 8, 10, 12
- Add and subtract mixed fractions
- Multiply a fraction by a whole number
- See relationship between decimals and fractions

I can then subtract 1967.

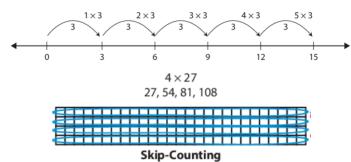
Place Value Splitting

I can break numbers up without models to see if I need to regroup while subtracting.

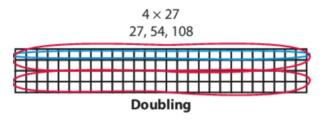
	8 13 1,993 =	1,900 + 90 +13
-	1,967 =	1,900 + 60 + 7
	26	20 + 6

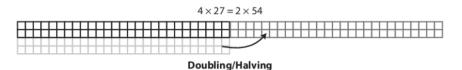
<u>Algorithm</u>

As I become more efficient, I understand and use the standard algorithm to solve subtraction problems.


$$\begin{array}{c}
1,991 \\
-1,919 \\
\hline
72
\end{array}$$
1961
$$\begin{array}{c}
-1934 \\
0033
\end{array}$$

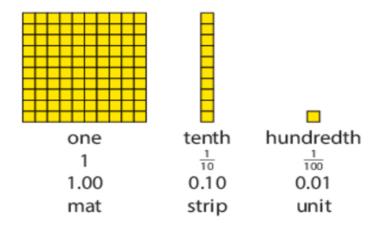
Decimals


Multiplication


I build on my multiplication reasoning from 3rd grade to do more complex multiplication problems

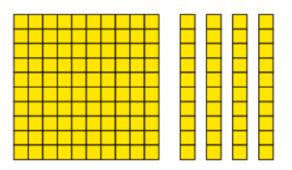
Number Line/Skip Counting

Doubling & Halving


Tile Array Partial Product

I start by using arrays like I did in 3rd grade, but move on to the area model.

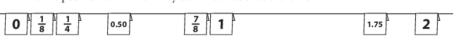
 $4 \times 27 = (4 \times 10) + (4 \times 10) + (4 \times 7)$



I can recognize decimals using base ten pieces as decimals or fractions.

I could name this model one and four-tenths and write it as a fraction number $1 \frac{4}{10}$ or as a decimal number 1.4

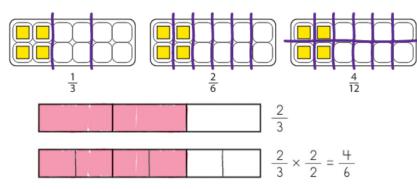
I could see that it can be named one and forty-hundredths and be written as 140/100 or 1.40.



Fractions

Only denominators 2, 3, 4, 5, 6, 8,10,12,100 are used in 4th grade.

Number Line


I can order fractions and decimals on a number line to compare

value and equivalence.

<u>Models</u>

I can use models to see if fractions are equivalent.

Equations

I can use addition and multiplication strategies.

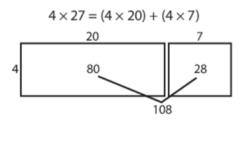
Equivalent Fractions

$$\frac{1}{2} = \frac{1}{4} + \frac{1}{4} = \frac{2}{4}$$

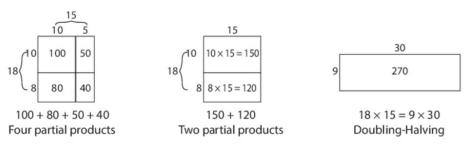
$$\frac{1}{2} = \frac{2}{2} = 1$$

$$\frac{1}{2} = \frac{1}{4} + \frac{1}{4} = \frac{2}{4}$$

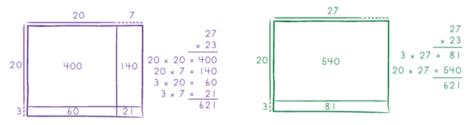
$$\frac{1}{2} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{4}{8}$$


$$\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{4}{4} = 1$$

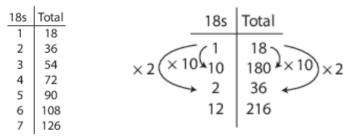
$$\frac{1}{4} = \frac{1}{8} + \frac{1}{8} = \frac{2}{8}$$


$$\frac{1}{4} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{4}{16}$$

$$\frac{1}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4}$$


Area Model

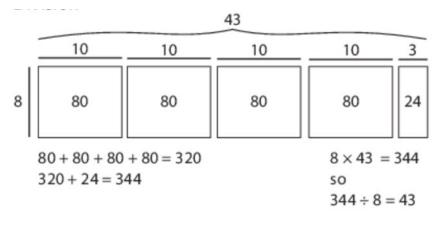
I can break down problems using the area model to help me make sense of the task using a variety of different strategies.

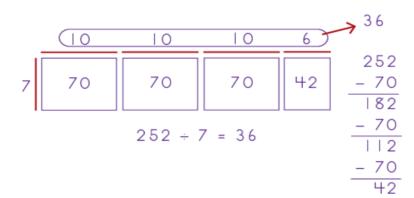


As I build my understanding, I move towards using an algorithm to become more efficient.

Ratio Table

I can see the pattern in a ratio table to help me solve problems.

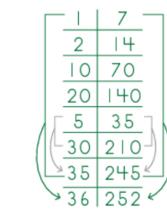

Division


I use my understanding of the relationship between multiplication and division to help me solve problems.

Area Model

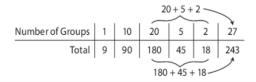
I can break down numbers to find the answer. This is similar to the equal groups I made in 3rd grade.

I made each group of 10 x 8 and continued until I couldn't make a complete group of 80. I grouped total of 320. I had 24 more to reach


- 42

	20	10	6			
7	140	70	42			
252 ÷ 7 = 36		40 + 70 = 2 0 252 - 2 0 = 42 42 ÷ 7 = 6				

Ratio Table


I can use a ratio table to see patterns and multiplicative relationships between numbers to create partial products to find the final product.


$252 \div 7 = ?$

35 + 210 = 245 245 + 7 = 252 so 252 ÷ 7 = 36

Strategy for solving 243 ÷ 9

Groups	Total	
1	9	1×9= 9
10	90	$10 \times 9 = 90$
20	180	20 × 9 = 180
5	45	5 × 9 = 45
2	18	2 × 9 = 18
27	243	
2	18	

243 ÷ 9 = 27